مختلف قسم کے اور معیاری انحراف کے درمیان فرق
مختلف قسم کے بمقابلہ معیاری انعقاد ہوگا. اعداد و شمار میں تبدیلی، ہمیں شاید پہلی جگہ میں اعداد و شمار کی ضرورت نہیں ہوگی. تغیرات کو اعداد و شمار میں مختلف قسم کے طور پر بیان کیا جاتا ہے جو ان کے معنی سے اقدار کی فاصلے کی پیمائش ہے. اگر قیمتوں کے قریب اقدار کی جاتی ہے تو متغیر تھوڑا یا چھوٹا ہوتا ہے. متوقع نتائج اور ان کی حقیقی اقدار کے درمیان فرق کی وضاحت کرنے کے لئے معیاری انحراف ایک اور پیمائش ہے. اگرچہ قریب سے دونوں سے متعلق تعلق، متغیر اور معیاری انحراف کے درمیان اختلافات ہیں جو اس مضمون میں بحث کی جائیں گی.
خام اقدار کسی بھی تقسیم میں بے معنی ہیں اور ہم ان سے کوئی معقول معلومات نہیں نکال سکتے ہیں. یہ معیاری انحراف کی مدد سے ہے کہ ہم ایک قدر کی اہمیت کی تعریف کر سکتے ہیں کیونکہ یہ ہمیں بتاتا ہے کہ ہم اس قدر قدرے ہیں. متغیر معیاری انحراف کے تصور میں اسی طرح کی ہے مگر اس کے علاوہ یہ ایسڈی کا ایک گراؤنڈ قیمت ہے. مثال کے طور پر اس کی مدد سے متغیر اور معیاری انحراف کے تصورات کو سمجھنے میں یہ احساس ہوتا ہے.
فرض کریں کہ ایک کسان ایک بڑھتی ہوئی قددو ہے. اس کے پاس مختلف وزن کا دس کدو ہے جو مندرجہ ذیل ہیں.
2. 6، 2. 6، 2. 8، 3. 0، 3. 1، 3. 2، 3. 3، 3. 5، 3. 6، 3. 8. یہ کدو کے اوسطا وزن کا حساب کرنا آسان ہے یہ 10 کی طرف سے تقسیم کردہ تمام اقدار کی رقم ہے. اس صورت میں یہ ہے 3. 15 پونڈ. تاہم، کسی بھی کدو وزن کا وزن زیادہ نہیں ہوتا ہے اور وہ وزن میں مختلف ہوتی ہے. اس میں 55 پاؤنڈ ہلکے ہلکے وزن سے کم 65 پونڈ ہے. اب ہم مندرجہ بالا طریقے سے ہر قیمت کا فرق لکھ سکتے ہیں-0. 55، -0. 55، -0. 35، -0. 15، -0. 05، 0. 15، 0. 35، 0. 45، 0. 65.
ان اختلافات سے مراد کیا مطلب ہے. ، اگر ہم اوسط فرق تلاش کرنے کی کوشش کرتے ہیں تو، ہم یہ دیکھتے ہیں کہ ہم نے مزید اضافہ کرنے کے طور پر مطلب نہیں ملسکتے ہیں، منفی اقدار مثبت اقدار کے برابر ہیں اور اوسط فرق اس طرح کا حساب نہیں کیا جا سکتا. لہذا انہیں فیصلہ کرنے کا فیصلہ کیا گیا تھا کہ وہ تمام اقدار کو مرکوز کرنے سے قبل ان کو شامل کرنے اور اس کا مطلب تلاش کریں. اس صورت میں، درج ذیل قیمتیں درج ذیل ہیں0. 3025، 0. 3025، 0. 1225، 0. 0225، 0. 0025، 0. 0025، 0. 1225، 0. 2025، 0. 4225.
اب ان اقدار کو شامل کیا جا سکتا ہے اور دس تک پہنچنے کے لئے تقسیم کیا جاسکتا ہے. ایک قدر جسے مختلف طور پر جانا جاتا ہے. اس مثال میں اس مثال میں 0. 1525 پونڈ ہے. اس قدر اس قدر زیادہ اہمیت نہیں رکھتی ہے کیونکہ ہم نے ان کے معنی کو تلاش کرنے سے پہلے فرق کیا تھا. لہذا ہمیں معیاری انحراف پر پہنچنے کے لئے مختلف قسم کے مربع جڑ کو تلاش کرنا ہوگا. اس صورت میں یہ 0.3905 پونڈ ہے.
مختصر میں:
• مختلف متغیر اور معیاری انحراف کسی بھی ڈیٹا میں اقدار کے پھیلاؤ کے اقدامات ہیں.
• متغیر نمونے کے معنی سے انفرادی اختلافات کے چوکوں کا مطلب لے کر شمار کیا جاتا ہے معیاری انحراف متغیر کی مربع جڑ ہے. تجویز کردہ |